What is the eikonal approximation? Why and when is it useful for describing nuclear collisions and selected nuclear reactions?

Tokyo Institute of Technology Ookayama, 20th January 2011

Jeff Tostevin Department of Physics University of Surrey, UK To discuss <u>approximate</u> solutions of the Schrodinger equation for states of **two**, **three** or more bodies at 'high energies' by introducing the eikonal (forward-scattering dominated) approximation of the reaction dynamics.

To bring out the importance of the eikonal S-matrix, a function if the impact parameter of the projectile, or of a component of the projectile, in this formulation of the reaction and scattering of the interacting systems.

To gain an impression of how accurate the eikonal approximation, is as a function of the projectile energy, and to see how one can describe both point particle and composite projectile scattering using these methods.

There are many good direct reactions texts:

<u>Direct nuclear reaction theories</u> (Wiley, Interscience monographs and texts in physics and astronomy, v. 25) <u>Norman Austern</u>

<u>Direct Nuclear Reactions</u> (Oxford University Press, International Series of Monographs on Physics, 856 pages) <u>G R Satchler</u>

Introduction to the Quantum Theory of Scattering (Academic, Pure and Applied Physics, Vol 26, 398 pages) <u>L S Rodberg</u>, <u>R M Thaler</u>

<u>Direct Nuclear Reactions</u> (World Scientific Publishing, 396 pages) Norman K. Glendenning

Introduction to Nuclear Reactions (Taylor & Francis, Graduate Student Series in Physics, 515 pages) <u>C A Bertulani, P Danielewicz</u>

<u>Theoretical Nuclear Physics: Nuclear Reactions</u> (Wiley Classics Library, 1938 pages) <u>Herman Feshbach</u>

Introduction to Nuclear Reactions (Oxford University Press, 332 pages) <u>G R Satchler</u>

Nuclear Reactions for Astrophysics (Cambridge University Press, 2010) Ian Thompson and Filomena Nunes

Exotic nuclei production - projectile fragmentation

Random removal of protons and neutrons from heavy projectile in peripheral collisions at <u>high energy</u> - 100 MeV per nucleon or more

Direct reactions – types and characteristics

Direct reactions – requirements

Description of wave functions for scattering of nucleons or clusters from a heavier target and/or at higher energies: (a) high nuclear level density and broad overlapping resonances, (b) many open reaction channels, inelasticity and absorption. Use a complex (absorptive) optical model potential – from theory or simply fitted to elastic scattering data for the system and the energy of interest.

Distorted waves:

Optical potentials – the role of the imaginary part

$$\bar{k}^2 = \frac{2\mu}{\hbar^2} (E + V_0 + iW_0) = \frac{2\mu}{\hbar^2} (E + V_0) \left[1 + \frac{iW_0}{E + V_0} \right]$$
$$\bar{k} = k \left[1 + \frac{iW_0}{E + V_0} \right]^{1/2} \approx k \left[1 + \frac{iW_0}{2(E + V_0)} \right], \quad W_0 \ll E, V_0$$

So, for $W_0 > 0$, $\bar{k} = k + ik_i/2$, $k_i = kW_0/(E + V_0) > 0$,

$$\bar{\psi}(x) = e^{i\bar{k}x} = e^{ikx}e^{-\frac{1}{2}k_ix}, \quad |\bar{\psi}(x)|^2 = e^{-k_ix}$$

The Schrodinger equation (1)

Large r: The phase shift and partial wave S-matrix

$$\frac{\text{Scattering states}}{\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - \frac{2\mu}{\hbar^2}U_{\ell j}(r) + k^2\right)u_{k\ell j}(r) = 0}$$

and beyond the range of the nuclear forces, then

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - \frac{2\eta k}{r} + k^2\right) u_{k\ell j}(r) = 0, \quad \eta = \frac{\mu Z_c Z_v e^2}{\hbar k}$$

 $F_{\ell}(\eta, kr), \ G_{\ell}(\eta, kr)$ regular and irregular Coulomb functions

$$u_{k\ell j}(r) \rightarrow e^{i\delta_{\ell j}} [\cos \delta_{\ell j} F_{\ell}(\eta, kr) + \sin \delta_{\ell j} G_{\ell}(\eta, kr)] \rightarrow (i/2) [H_{\ell}^{(-)}(\eta, kr) - S_{\ell j} H_{\ell}^{(+)}(\eta, kr)]$$

$$H_{\ell}^{(\pm)}(\eta, kr) = G_{\ell}(\eta, kr) \pm iF_{\ell}(\eta, kr)$$

Phase shift and partial wave S-matrix: Recall

$$u_{k\ell j}(r) \rightarrow e^{i\delta_{\ell j}} [\cos \delta_{\ell j} F_{\ell}(\eta, kr) + \sin \delta_{\ell j} G_{\ell}(\eta, kr)]$$

If *U(r)* is real, the phase shifts $\delta_{\ell j}$ are real, and [...] also

Having calculate the phase shifts and the partial wave S-matrix elements we can then compute all scattering observables for this energy and potential (but later). S-matrix - ingoing and outgoing waves amplitudes

Eikonal approximation: for point particles (1)

Approximate (semi-classical) scattering solution of

$$\begin{pmatrix} -\frac{\hbar^2}{2\mu} \nabla_r^2 + U(r) - E_{cm} \end{pmatrix} \chi_{\vec{k}}^+(\vec{r}) = 0, \quad \mu = \frac{m_c m_v}{m_c + m_v} \\ \begin{pmatrix} \nabla_r^2 - \frac{2\mu}{\hbar^2} U(r) + k^2 \end{pmatrix} \chi_{\vec{k}}^+(\vec{r}) = 0 \\ \text{small wavelength} \\ \text{valid when } |U|/E \ll 1, \quad ka \gg 1 \quad \Rightarrow \text{ high energy} \\ \text{Key steps are: (1) the distorted wave function is written} \\ \chi_{\vec{k}}^+(\vec{r}) = \exp(i\vec{k} \cdot \vec{r}) \quad (\vec{r}) \quad \text{all effects due to } U(r), \end{cases}$$

$$\chi^+_{\vec{k}}(\vec{r}) = \exp(i\vec{k}\cdot\vec{r}) \ \omega(\vec{r})$$
 all effects due to $U(r)$
modulation function

(2) Substituting this product form in the Schrodinger Eq. $\left[2i\vec{k}\cdot\nabla\omega(\vec{r}) - \frac{2\mu}{\hbar^2}U(r)\omega(\vec{r}) + \nabla^2\omega(\vec{r})\right]\exp(i\vec{k}\cdot\vec{r}) = 0$ Eikonal approximation: point neutral particles (2)

$$\left[2i\vec{k}\cdot\nabla\omega(\vec{r}) - \frac{2\mu}{\hbar^2}U(r)\omega(\vec{r}) + \nabla^2\omega(\vec{r})\right]\exp(i\vec{k}\cdot\vec{r}) = 0$$

The conditions $|U|/E \ll 1$, $ka \gg 1 \rightarrow$ imply that

 $2\vec{k}\cdot\nabla\omega(\vec{r}) \gg \nabla^2\omega(\vec{r})$ Slow spatial variation cf. k and choosing the z-axis in the beam direction \vec{k}

 $\frac{d\omega}{dz} \approx -\frac{i\mu}{\hbar^2 k} U(r)\omega(\vec{r})$

with solution

$$\omega(\vec{r}) = \exp\left[-\frac{i\mu}{\hbar^2 k} \int_{-\infty}^{z} U(r) dz'\right]$$

1D integral over a straight line path through U at the impact parameter b

phase that develops with z

$$\chi_{\vec{k}}^{+}(\vec{r}) = \exp(i\vec{k}\cdot\vec{r}) \ \omega(\vec{r}) \approx \exp(i\vec{k}\cdot\vec{r}) \ \exp\left[-\frac{i\mu}{\hbar^{2}k}\int_{-\infty}^{z}U(r)dz'\right]$$

So, after the interaction and as $z \rightarrow \infty$

$$\chi^+_{\vec{k}}(\vec{r}) \to \exp(i\vec{k}\cdot\vec{r}) \, \exp\left[-\frac{i\mu}{\hbar^2 k} \int_{-\infty}^{\infty} U(r)dz'\right] = S(b)\exp(i\vec{k}\cdot\vec{r})$$

$$\chi^+_{\vec{k}}(\vec{r}) \to S(b) \exp(i\vec{k}\cdot\vec{r})$$

S(b) is amplitude of the forward going outgoing waves from the scattering at impact parameter b

Eikonal approximation to the S-matrix S(b)

$$S(b) = \exp\left[-\frac{i}{\hbar v}\int_{-\infty}^{\infty}U(r)dz'\right]$$

$$v = \hbar k/m$$

Moreover, the structure of the theory generalises simply to few-body projectiles

Eikonal approximation: point particles - summary

Semi-classical models for the S-matrix - S(b)

All cross sections, etc. can be computed from the S-matrix, in either the <u>partial wave</u> or the <u>eikonal</u> (impact parameter) representation, for example (spinless case):

$$\begin{aligned} \sigma_{el} &= \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) |1 - S_\ell|^2 \approx \int d^2 \vec{b} \ |1 - S(b)|^2 \\ \sigma_R &= \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) (1 - |S_\ell|^2) \approx \int d^2 \vec{b} \ (1 - |S(b)|^2) \\ \sigma_{tot} &= \sigma_{el} + \sigma_R = 2 \int d^2 \vec{b} \ [1 - \operatorname{Re}.S(b)] \quad \text{etc.} \end{aligned}$$

and where (cylindrical coordinates)

$$\int d^2 \vec{b} \equiv \int_0^\infty b db \int_0^{2\pi} d\phi = 2\pi \int_0^\infty b db$$

Point particle – the differential cross section

Using the standard result from scattering theory, the elastic scattering amplitude is

$$\begin{split} f(\theta) &= -\frac{\mu}{2\pi\hbar^2} \int d\vec{r} \exp(-i\vec{k}'\cdot\vec{r}) U(r) \,\chi^+_{\vec{k}}(\vec{r}) \\ &= -\frac{\mu}{2\pi\hbar^2} \int d\vec{r} \exp(-i\vec{k}'\cdot\vec{r}) \,U(r) \,\exp(i\vec{k}\cdot\vec{r}) \,\omega(\vec{r}) \\ &= -\frac{\mu}{2\pi\hbar^2} \int d\vec{r} \exp(i\vec{q}\cdot\vec{r}) \,U(r) \,\omega(\vec{r}) \end{split}$$

with $\vec{q} = \vec{k} - \vec{k'}$, $q = 2k \sin(\theta/2)$ is the momentum transfer. Consistent with the earlier high energy (forward scattering) approximation

$$ec{q}\cdotec{r}pproxec{q}\cdotec{b}$$

 $ec{q}\cdotec{k}pprox0$

Point particles – the differential cross section

So, the elastic scattering amplitude

$$f(\theta) = -\frac{\mu}{2\pi\hbar^2} \int d\vec{r} \exp(i\vec{q}\cdot\vec{r}) U(r) \,\omega(\vec{r})$$

is approximated by

$$f(\theta) = -\frac{\mu}{2\pi\hbar^2} \int d\vec{r} \exp(i\vec{q}\cdot\vec{r}) U(r)\,\omega(\vec{r})$$

is approximated by

$$f_{eik}(\theta) = -\frac{ik}{2\pi} \int d^2\vec{b} \exp(i\vec{q}\cdot\vec{b}) \int_{-\infty}^{\infty} \frac{d\omega}{dz} dz$$

$$\begin{cases} \frac{d\omega}{dz} = -\frac{i\mu}{\hbar^2 k} U(r)\omega(\vec{r}) \\ U(r)\omega(\vec{r}) = \frac{i\hbar^2 k}{\mu} \frac{d\omega}{dz} dz \end{cases}$$

 $J_0(qb)$

Bessel

function

Performing the z- and azimuthal ϕ integrals

$$f_{eik}(\theta) = -ik \int_0^\infty b \, db \, J_0(qb) \left[S(b) - 1\right]$$
$$S(b) = \exp\left[i\chi(b)\right] = \exp\left[-\frac{i}{\hbar v} \int_{-\infty}^\infty U(r) dz'\right]$$

Point particle – the Coulomb interaction

Treatment of the Coulomb interaction (as in partial wave analysis) requires a little care. Problem is, eikonal phase integral due to <u>Coulomb potential diverges</u> logarithmically.

Accuracy of the eikonal S(b) and cross sections

J.M. Brooke, J.S. Al-Khalili, and J.A. Tostevin PRC 59 1560

Accuracy of the eikonal S(b) and cross sections

J.M. Brooke, J.S. Al-Khalili, and J.A. Tostevin PRC **59** 1560

Non-point particles: such as in knockout reactions

One such experimental option is one or two-nucleon removal – at ~100 MeV/nucleon

How can we describe and what can we learn from these?

Few-body projectiles – the adiabatic model

Freeze internal co-ordinate **r** then scatter c+v from target and compute $f(\theta, \mathbf{r})$ for all required <u>fixed</u> values of **r**

Physical amplitude for breakup to state $\phi_k(\mathbf{r})$ is then, $f_k(\theta) = \langle \phi_k | f(\theta, \mathbf{r}) | \phi_0 \rangle_{\mathbf{r}}$

Achieved by replacing $H_p \rightarrow -\varepsilon_0$ in Schrödinger equation

For 100 and 250 MeV/u incident energy:

$$\begin{split} \gamma &= 1.1, \ v/c = 0.42, & \gamma = 1.25, \ v/c = 0.6, \\ \Delta t &= 7.9 \times d \times 10^{-24} s, & \Delta t = 5.6 \times d \times 10^{-24} s \end{split}$$

Adiabatic approximation: composite projectile

products of the S-matrices

$$\exp[i\chi(b_1,\ldots)] = \prod_i S_i(b_i)$$

So, after the collision, as $Z \rightarrow \infty$ $\omega(\mathbf{r}, \mathbf{R}) = S_c(b_c) S_v(b_v)$ $\Psi_{\mathbf{K}}^{\text{Eik}}(\mathbf{r}, \mathbf{R}) \rightarrow e^{i\mathbf{K}\cdot\mathbf{R}} S_c(b_c) S_v(b_v) \phi_0(\mathbf{r})$

with S_c and S_ν the eikonal approximations to the S-matrices for the independent scattering of c and v from the target - the dynamics

averaged over position probabilities of c and v

amplitude that c,v survive interaction with b_c and b_v

Independent scattering information of c and v from target

Use the best available few- or many-body wave functions

More generally,

$$S_{\alpha\beta}(b) = \langle \phi_{\beta} | S_1(b_1) S_2(b_2) \dots S_n(b_n) | \phi_{\alpha} \rangle$$

for any choice of 1,2 ,3, n clusters for which a most realistic wave function ϕ is available

Eikonal approach – generalisation to composites

$$S_p(b) = \langle \phi_{\ell j} | S_c(b_c) S_v(b_v) | \phi_{\ell j} \rangle_{\vec{r}}$$

You can now calculate bound states (**bound**) and eikonal S-matrices (**eikonal_s**) and can calculate this composite S-matrix (using **knockout**). The elastic scattering of c, v or the composite can then be calculated (using **glauber**). So you can now calculate the elastic scattering of the neutron, ¹⁰Be, and the composite halo system ¹¹Be ?

Related equations exist for the differential cross sections, etc.

$$\sigma_{abs} \rightarrow 1 - |S_c|^2 |S_1|^2 |S_2|^2$$

$$1 = [|S_c|^2 + (1 + S_c|^2)] \\ \times [|S_1|^2 + (1 - |S_1|^2)] \\ \times [|S_2|^2 + (1 - |S_2|^2)] \end{bmatrix}$$

$$\begin{array}{c} \text{core survival} \\ \text{and nucleon} \\ \text{"removal"} \end{array}$$

$$\begin{array}{cccc} \sigma_{abs}^{\rm KO} & \to & |S_c|^2 & (1 - |S_1|^2)(1 - |S_2|^2) & {\rm 2N \ stripping} \\ & + & |S_c|^2 & |S_1|^2(1 - |S_2|^2) \\ & + & |S_c|^2 & (1 - |S_1|^2)|S_2|^2 & {\rm 1N \ stripped} \\ \end{array}$$

Stripping of a nucleon – nucleon 'absorbed'

Diffractive dissociation of composite systems

The total cross section for removal of the valence particle from the projectile due to the break-up (or diffractive dissociation) mechanism is the break-up amplitude, summed over all final continuum states

$$\sigma_{\rm diff} = \int d\mathbf{k} \int d\mathbf{b} \left| \langle \phi_{\mathbf{k}} \mid S_{\rm c}(\mathbf{b}_{\rm c}) S_{\rm v}(\mathbf{b}_{\rm v}) \mid \phi_0 \rangle \right|^2$$

can (for a weakly bound system with a single bound state) be expressed in terms of only the projectile ground state wave function as:

$$\sigma_{\rm diff} = \int d\mathbf{b} \left\{ \langle \phi_0 \mid \mid S_c \mid S_v \mid^2 \mid \phi_0 \rangle - \mid \langle \phi_0 \mid S_c \mid S_v \mid \phi_0 \rangle \mid^2 \right\}$$

Diffractive (breakup) removal of a nucleon

Core-target effective interactions – for $S_c(b_c)$

At higher energies – for nucleus-nucleus or nucleon-nucleus systems – first order term of multiple scattering expansion

$$t_{NN}(r) = \left[-\frac{\hbar v}{2}\sigma_{NN}(i+\alpha_{NN})\right]f(r), \quad \int d\vec{r}f(r) = 1$$

e.g. $f(r) = \delta(r)$ nucleon $f(r) = (\sqrt{\pi}t)^{-3} \exp(-r^2/t^2)$ res

nucleon-nucleon cross section

resulting in a COMPLEX nucleus-nucleus potential

M.E. Brandan and G.R. Satchler, Phys. Rep. 285 (1997) 143-243.

Sizes - Skyrme Hartree-Fock radii and densities

